
ISRAEL JOURNAL OF MATHEMATICS 95 (1996), 393-410 

MINIMAL COCYCLES WITH THE 
SCALING PROPERTY AND 

SUBSTITUTIONS 

BY 

J E A N - M A R I E  D U M O N T *  

Laboratoire de Mathdmatiques Discr~tes, U.P.R. 9016 

Case 930, 163 avenue de Luminy, 13288 Marseille Cedex 9, France 

e-mail: dumont@lumimath.univ-mrs.fr 

AND 

TETURO KAMAE 

Osaka City University, Department of Mathematics 
Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558 Japan 

e-mail: h17PO@cc.osaka-cu.ac.jp 

AND 

SATOSHI  T A K A H A S H I  

Osaka University, Department of Mathematics 

Machikaneyama-cho 1-1, Toyonaka, Osaka, 560 Japan 
e-mail: takahasi@math.wani.osaka-u.ac.jp 

ABSTRACT 

'Fracta l '  func t ions  are formula ted  as a min imal  cocycle on a topological 

dynamics  which admi t s  nontr ivial  scMing t rans format ions .  In  th is  paper ,  

it is proved t ha t  if in addi t ion it admi t s  a con t inuous  family  of scaling 

t r ans fo rmat ions ,  t h e n  its c a p a c i t y  is not  in o(N2).  We define min ima l  

cocycles wi th  nontr ivia l  scaling t r ans fo rma t ions  coming  f rom subs t i tu -  

t ions on a finite a lphabe t  which are proved to have capaci ty  O(N), so 

t ha t  t hey  admi t  only a discrete family of scaling t r ans fo rmat ions .  We 

also cons t ruc t  one which has  capaci ty  O(N 2) and  admi t  a con t inuous  

family of scaling t rans format ions .  
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1. I n t r o d u c t i o n  

Let fl be the space of continuous functions ~: l~ --* IR with a;(0) = 0 with the 

compact open topology. For t E R, let us define Ut: ft --* f~ by (Ut~)(s) = 

w(s + t) - w(t). For A > 0, let V~: f2 --* f2 be such that (V~w)(s) = ,k~w(~-ls), 

where a is a fixed real number with 0 < a < 1 

We study a nontrivial compact subspace X of ft with the properties that 

(i) {U~w: t E R} = X for any w �9 X, and 

(ii) for some positive A # 1, V~X c X.  

In this case, the set of A as above together with 1 is called the base  se t  of X. 

Such X as above is called a m in ima l  cocyc le  w i t h  t h e  a -sca l ing  p r o p e r t y .  

If in addition, the base set is ~ ,  then X is said to have the c o n t i n u o u s  scaling 

property (otherwise, the d i s c r e t e  scaling property). 

In this paper, we prove that any function w in a nonzero minimal cocycle with 

the a-scaling property is uniformly a-H61der continuous but nowhere a~-H61der 

continuous for any a ~ > a. We also prove that a minimal cocycle with the 

continuous scaling property cannot have c a p a c i t y  in o(N2). We know examples 

of minimal cocycles with the continuous scaling property having capacity O(N 2) 

so that this lower bound is exact. On the other hand, the minimal cocycles 

determined by substitutions on a finite alphabet have capacity O(N),  and hence, 

have the discrete scaling property. 

There are two important aspects of 'fraetal' functions: almost periodicity and 

self-similarity. Our notion of minimal cocycles with the scaling property is a 

formulation of 'fractal' functions from these points of view. 

The self-affine functions in the sense of [1] can be embedded in minimal cocycles 

with the scaling property. In fact, these functions induce the minimal cocycles 

determined by substitutions with constant lengths, which are discussed in [2] 

from the point of view of stochastic processes. The substitutions define counting 

systems which are generalizations of r-adic representations ([3]). The sums of 

digits to these counting systems are discussed in [4]. Our dynamical systems 

defined in Section 3 are translations of the 2-way expanded 'numbers' in these 

counting systems. In the Japanese text book [5], we have already published most 

of the results here including a general construction of minimal cocycles with the 

continuous scaling property. Though a part of the text book was intended to 

be an introduction to this paper, the delay of its preparation caused the time 

inversion. Another simpler way of general construction of minimal cocycles with 
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the continuous as well as discrete scaling proper ty  together with unique ergodicity 

is given in a for thcoming paper [6]. 

2. M i n i m a l  c o c y c l e s  w i t h  t h e  s c a l i ng  p r o p e r t y  

Let X be a nonempty  topological space and (Tt)teR be a c o n t i n u o u s  f low on 

X,  tha t  is, 

(1) for any t E R, Tt is a mapping  X ~ X such that  To is the identity and 

Ts o Tt = Ts+t for any s, t E R, and 

(2) (x, t) ~ Ttx is a continuous mapping  X x R ~ X. 

We call a function F:  X x R ~ R a c o c y c l e  on X with respect to (Tt)teR if 

F(x, s + t) = F(x,  s) + F(T,z ,  t) 

holds for any x C X and s, t E R. It  is called a c o n t i n u o u s  cocycle if in addition, 

F(x,  t) is a continuous function of (x, t). 

Let Ft be the set of continuous functions w: R --* R such tha t  w(0) = 0 with 

the compact  open topology. For any s E R, we define a mapping  U,: Ft ~ Ft by 

= + t )  - 

Then,  (U~)se~ is a continuous flow on Ft. 

For a continuous cocycle F on X and x E X,  the mapping  t ~ F(x,  t) from 

R to R belongs to Ft, which is denoted by F~. Then  the mapping  x ~ Fx from 

X to Ft is continuous. We denote by Ft(F) the closure of {F~: x E X}.  Then,  it 

holds tha t  UsFt(F) = f~(F) for any s C R. The set Ft(F) is also called a cocycle. 
A continuous cocycle F is called m i n i m a l  if 

(3) Ft(F) is compact ,  and 

s �9 R} = n ( F )  

for any ~ �9 Ft(F). 

Let (~ be a real number  with 0 < c~ < 1 which we fix th roughout  this section. 

A continuous cocycle F is said to have the ~ - sca l i ng  p r o p e r t y  if there exists 

> 0 with 3 # 1 such tha t  

(4) V~ft(F) C Ft(F), 

where V~: gt ~ Ft is defined as 

= Z  (Z-lt) (vt c R) 
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for any w E ~2(F). 

A posit ive number /3  with the p roper ty  (4) is called a b a s e  of F with respect  

to a .  

THEOREM 1 : Let F be a nonzero, minimal cocycle with the a-scaling property. 

Then the following results hold: 

(i) The set of  bases o f f  with respect to a is a closed, multiplicative subgroup 

of~_. 
(ii) There  exists a constant C such that 

lw(s + t) - w(s)l < Cltl ~ 

for any s, t E R and a; E ~2( F). 

a-HSlder continuous. 

(iii) For any w E f~(F) and s E R, 

That is, the functions in f~( F)  are uniformly 

l imsup  l l w ( s  + t) - w(s)l > 0 
qo 

holds. That is, any w E f~(F) is nowhere even locally a'-H61der continuous 

for any a'  > a. 

Proofi (i) I t  is clear by the definition tha t  if/3 and "y are bases of F with respect  

to a ,  then so is/33'. I t  is also clear tha t  if/3 is a base with respect  to a ,  then so 

i s /3-1 ,  since V~f~(F) = f~(F) by the minimal i ty  of F.  

Let  /3,,'s be bases of F w i t h / 3 ,  -* /3. Then  for any w E f~(F), it holds tha t  

V~w = l imn-oo V ~ w  E f / (F ) .  Hence, /3  is a base. Thus  the set of bases is closed. 

(ii) By (3), 

C := sup I~(t)l < oo. 
wEf~(F),ltl_<l 

Le t /3  > 1 be a base of F with respect  to a .  Take any w E f l (F )  and s, t E 

Let k E Z satisfy tha t  

/3k-1 < Itl </3k. 

Then,  denot ing 77 = Va-~Ustv E f~(F), we have 

I~(s + t) - ~(8)1 = I (U~) ( t ) l  = I/3k'%(~-~t)l ~ /3~ '~c  < /3~Cl t l% 

which proves (ii). 
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(iii) Let ~3 > 1 be a base of F with respect to a.  We prove tha t  

inf sup Iw(t)l > 0. 
well(F) 1< t< /3  

Suppose tha t  this is not  true. Then,  since f~(F) is compact ,  there exists ~v0 E 

f~(F) such tha t  ~vo(t) = 0 for any t E [1, 13]. Since /3 n is a base of  F with respect 

to a for any n = 1, 2 . . . .  , there exists w,, E f~(F) such tha t  

~n(t) = ~n"~0(~-nt)  

for any t E •. Then,  w,,(t) = 0 for any t E [ ~ , 6 ~ + 1 ] .  Let w E 12(F) be any 

limit point  of the sequence (Uz.+nw,~: n = 0, 1, 2 . . . .  ). Then,  it is easy to see 

tha t  w = 0. By the minimality, this implies tha t  ~2(F) = {0} and tha t  F is the 

zero function, which contradicts  our assumption.  

Thus, 

6 :=  inf sup I~(t)l > 0. 
wEft(F) l_<t_<~ 

Then,  for any w E f l (F )  and s E ~ it holds tha t  

1 
lim sup I~(s + t) - ~(s)l  

riO t ~  

which proves (iii). I 

1 
= l imsup  ~[(U~w)( t ) l  

tlo t 

1 
= l imsup  sup I (u~) (~ - '~ t ) l  

n - - o o  l<t<f l  (f l--nt)  a 

> f l -~ ' l imsup  sup I~n~(U,~) (~ - " t ) l  
n~ov l< t<~  

> ~3 - ~  inf sup Io(t)l 
r/Eft(F) l_<t_fl 

= ~ - %  > 0, 

COROLLARY 1 : Let F be a nonzero minimal cocycle with the a-scaling property. 

Then a is unique. 

COROLLARY 2: Let F be a minimal cocycle with the a-scaling property. Let G 

be the set of bases of F. Then either G = ~_  or there exists fl > 1 such that 

a = {~'~: n E z}.  
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THEOREM 2: Let  F be a nonzero, min imal  cocycle wi th  the a-scal ing proper t y  

wi th  0 < a < 1. A s s u m e  that for any  ~ > O, the c a p a c i t y  

min{l~E: E C ~2(F), for any w E f~(F), 

there exis ts  71 E E such that  sup [w(t) - rl(t)l  < e} 
O<t<N 

is o f  o( N 2) as N --, o0. Then there exists  ~3 > 1 such that  the set  of bases o f F  

is {~n: n 6 z}.  

Proof." Suppose that the conclusion is false. Then, by Corollary 2, the set of 

bases of F is R+. 

Take any k = 1 ,2 , . . . .  By the assumption, there exists ---N C f / (F)  for any 

N~-  - 1, 2 , . . .  such that  for any w E b2(F), there exists 7/Q EN such that  

1 
sup tw(t) - r/(t)l < 

O<_t<N - ~ "  
(5) 

Moreover, 
~EN lim - -  = 0. 

N~oo N 2 

Take a sequence (AN)N=1,2 .... of positive numbers such that 

lim A/v = 0 ,  lim NAN = c r  and lim ~'--N 
N ~ o o  N---coo N ~ o o  ( N A N )  ~ - - - ' ' ~  -- O. 

Take a sufficiently large N such that AN < 1 .  Let w E f~(F), 

and 

A = { 0 , 1 , . . . , [ N A N ] -  1}, 

B = { N -  [NAN] + 1, N -  [NAN] + 2 , . . . , N } .  

Since the set of bases of F is 1~_, for any (a, b) E A x B, there exists 7/(a,b) E 

f~(F) such that  

(0) 0(~ = ~ (ua~) \ - - - ~  ] 

for any t E R. Since N is sufficiently large, we have 

I~E/v < (NAN - 1) 2 < [NAN] 2. 
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Then, there exist (a, b), (a', b') E A • B with (a, b) # (d ,  b') such tha t  

1 
(7) sup I~(a,b)(t)- ~/(~,,b,)(t)l < ~. 

O<t<N 

Since (a, b) # (a', b'), either a # a' or b # b' holds. By symmetry,  we may assume 

that  a # a' and a < a'. 

Let to = 0 and define t,, inductively by the equation 

b - a b' - a' (8) a + -----~--t,~+l = a' + ~ t n  (n = 0, 1, 2,...). 

Then, by (6) and (8), we have 

(9) 

where 

(03(8n)  --  03(80)) -- (03(8n+1)  -- 03(81)) 

(n = 0 ,1 ,2  . . . .  ), 

b - a  
Sn = a + - - ~ - - t n .  

Since N is sufficiently large, (8) implies that  

(10) (t.+l t , ~ ) N  ! ( ~ - a '  a ) t n  - - - 1 < 3ANtn .  ~ _ ~  ( a ' -  ~) = 

Moreover since we take a sufficiently large N, ~ is sufficiently close to 1, and 

AN is small enough, hence we may assume by (10) tha t  0 = to < tl < . . .  < tk _< 

2k(a '  - a) < N where k has already been given in (5). 

Thus, adding the equations (10), we have for any n = 0, 1 , . . . ,  k 

tn N n ( a ' - a )  <_6k2(a ' - a ) A N  ( n = O ,  1 , . . .  k) .  (11) b - a  

Since I k~-e I _~ 1, this implies that  

(12) [(s,~ - a) - n (a '  - a)[ _< 6k2(a ' - a )AN (n  = O, 1 , . . . ,  k).  

By (7), (9) and (ii) of Theorem 1, there exists a constant C such tha t  

I03(sn+1) - 03(sn)  - 03(s l )  + 03(so)1 
~ 

- Inco,,b,)(tn)l 
1 1 

< ~ + (1 - (1 - 2 A N ) ~ ) C t .  ~ < ~ + 2 A N C ( 2 k ( a '  - a ) F  
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for any n = 0, 1 , . . . , k .  Therefore,  by summing  up this inequali ty for n = 

0 , 1 , . . . , m -  1, we have 

Iw(sm) - W(So) - m A  I < 1 + 2)~N(a' -- a) '~2Okl+~c 

for m = 0 , 1 , . . . , k ,  where A = w ( s l ) - w ( s o )  = w ( a ' ) - w ( a ) .  Hence, for n = 

0, 1 , . . . ,  k, we have 

(13) I(Uaw)(s,~ - a) - hAl  < 1 + 2Ag(a '  -- a)'~2~kl+'~C. 

By (12), (13) and (ii) of Theorem 1, 

I(Uaw)(n(a' - a)) - nAI <_ 1 + (a' - a)~D,  (14) 

where 

D = ( 2 ) ~ N 2 a k  l+a q- 6%kNC~k2a)C .  

By the assumpt ion  that.-the set of bases of F is R+,  there exists (N E f t (F )  

such tha t  

 N(t) = ( k ( a '  - - 

for any t E R. Then  by (14), we have for n = 0, 1 . . . .  , k, 

~ N ( k ) - k B ~ t  < k - ' ~ ( a ' - a ) - ~ ' + k - ' ~ D  , (15) 

where 

B N  = k l - a ( a  ' - a)- '~A.  

Since ~N(~)  is uniformly bounded as N -~ c~ in n = 0, 1 , . . . ,  k, B N  s tays  

bounded  as N ~ oo. Let {N '}  be a subsequence of {N} such tha t  there exist 

r/k E f~(F) and  EL E R for which 

lim BN, = E~:, 
N t ~ o o  

and 

lim (N,( t )  = r/k(t) 
N'---*oo 

holds uniformly on c o m p a c t a  t E R. Then  since (a '  - a) - ~  < 1, 

(16) r/k ( ~ ) -  k E k  < k  - ~  
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follows from (15) for n = 0, 1 , . . . ,  k. Since r/k(~) is uniformly bounded  as k ~ oo 

when n < k, Ek stays bounded as k ~ oc. Then,  there exists a subsequence {k'} 

of {k} such tha t  there exists r / � 9  f~(f) and E �9 R for which 

and 

lim Ek, = E, 

lim 7/k,(t) = ~/(t) 
kl~oo 

holds uniformly on compac ta  t �9 R. Then  by (16), y(t)  = tE holds for any 

t C [0, 1]. This contradicts  (iii) of Theorem 1, which completes the proof. | 

3. S u b s t i t u t i o n s  and  c o c y c l e s  

In  this chapter,  we construct  minimal cocycles with the scaling proper ty  deter- 

mined by substi tutions.  Before s tat ing the general construction,  we give a simpler 

example. 

Let ~ be the following subst i tut ion on 2 symbols {a, b}: 

r = aaabbbaaa and ~(b) = bbbaaabbb, 

where we denote  ~(a)0 = ~(a ) l  = ~(a)2 = a ,  ~fl(a)3 = ~(a)4 = ~(a)5 = b, etc. 

Let us consider a formal two-sided expansion in base 9: 

J = E Ji9-i (ji �9 { 0 , 1 , . . . , 8 } )  
- ~ < i < o o  

such tha t  l iminfi-- ._~ji  < 8 and l i m s u P i _ _ ~ j  i > 0. For this j ,  we associate 

a sequence a = (ai)iez on {a, b} such tha t  ~(ai)j. = ai+l for any i �9 Z. Let X 

be the set of such pairs (a,j) .  For Ca, j) and (y, h) in X with the proper ty  tha t  

there exists k such that  ai = ~i and ji = hi for any i < k, we can calculate the 

difference t :--- h - j �9 R just  as the usual 9-adic calculation. In this case, we 

denote (y, h) = Tt(a,j)  so tha t  (Tt)teR defines a continuous flow on X ,  where 

we identify these (a, j)  and 0?,h) if t = 0. For (a, j)  �9 X ,  we define a formal 

two-sided expansion 

f ( a , j ) =  E w(ai)3-i '  

where w(a) = 1 and w(b) = - 1 .  Define a cocycle F on X with respect to (Tt)teR 

by F((a, j ) ,  t) = f (Tt (a , j ) )  - f (a , j ) ,  the difference being able to be calculated 
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since the higher digits coincide. This example gives an example of a minimal 

cocycle with the �89 property. 

The general construction is a little more complicated. Let E be a finite set 

with ~E > 2. Let ~ be a substitution on E, that  is, ~ is a mapping from ~ into 

E+ = U~I ~i. For ~ E E +, we denote by L(~) the l e n g t h  of ~, that  is L(~) -- k 

if and only if ~ E Ek. An element ~ in E k is denoted as ~ = ~o~1 "" "(k-1 with 

~ E ~  ( i =  1 , . . . , k - 1 ) , s o t h a t  f o r a E E ,  

We extend the mapping ~a so that  the mapping ~a: ~+ --* Y,+ satisfies 

= 

for any k = 1, 2 , . . .  and a~ E E (i = 0, 1 . . . . .  k - 1), where the right-hand side 

implies the concatenation of ~(a~)'s. We assume that  ~ is m ix ing ,  that  is, there 

exists n such that  for any a,a'  E ~, a' appears in ~n(a) .  Let M = (mao,)o,o,e~ 

be the matr ix  associated to ~; that  is, 

(17) 

Since ~ is mixing, we have the following results known as the Perron-Frobenius 

Theorem. 

I. There exists a simple eigenvalue ,k of M such that  I,VI < A holds for any 

other eigenvalue A ~ of M. 

II. There exists a unique row vector u = (u(a)),,e~ and a unique column vector 

v = ( v ( a ) ) ~ :  such that  

(18) u(a) > O, v(a) > O (Vo" E ~), ~ u(a) = l, 
aE~ 

Let 

= i ,  

aEE 

uM = Au and M v =  Av. 

X = {(a~, ji)~ez: ai E E , j i  E {0, 1 , . . . ,  L(cp(ai)) - 1}, ~(ai) / ,  = ai+x(Vi E Z)}. 

We consider X_ the induced topological space as a subset of the product topo- 

logical space (Z x {0, 1 , . . . ,  r - 1}) z, where r = max~,e~. L(~(a)).  Then, X is a 
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compact  topological  space. For x = (a i , j i ) i e z  E X and n , m  E Z with  n < m, 

define a nonnegat ive integer O(x, n, m)  inductively as follows: 

O ( z , n , n  + l)  = j ~ ,  

(19) O ( x , n , m  + 1) = Z L(cP(~Z'~-'~(crn)i)) + J'~" 
i<8(ar,n,m) 

For a subset  S of Z, define an equivalence relation O s  on X by 

((o'i, Ji)iEz, (rh, hi)ie~,) E (~s iff ai = r/i and ji = hi for any i E S. 

Let O = Ukez  O(_~,k].  For x = (a i , j i ) i e z  and y = (rh, hi) iez  in X such tha t  

ak = 7/k and O(x, k, m)  < O(y, k, m)  for some k, m E Z with k < m,  we define 

pk(x, y) = l i m  A -'~ ~ v(~'~-k(ak)i) .  
O(=,k,n)<i<O(y,k,,~) 

I t  is clear from (18) tha t  the above limit exists. We define pk (x , x )  = 0 and 

Pk(y, x)  = --pk(x,  y) for x, y as above. For (z, y) E O, we define p(x,  y) = pk(x,  y) 

for some k E Z with (x, y) E O(-oo,k]. This  definition is independent  of the choice 

of k. I t  is clear tha t  for any x, y and z in the same equivalence class of (9, it 

holds tha t  

(20) p(x, z) = p(x, y) + p(y, z). 

Let g denote  the equivalence relation on X such tha t  (x, y) E ~ iff (x, y) E 0 

and p(x, y) = 0. The  equivalence classes of a consist of ei ther one element or 

two elements {x, x - } ;  the la t ter  case occurs iff x = (a i , j i ) i e z  E X satisfies t ha t  

j i  = 0 for any sufficiently large i E g and tha t  j i  > 0 for some i E Z. In this 

case, we define x -  = (rh, hi) iez  E X by 

rli = oi and hi = ji for any i < k, 

(21) hk = jk - 1, and 

hi = L(cg(ai)) - 1 for any i > k, 

where k is the m a x i m u m  i such tha t  ji  > 0. Such an equivalence class {x, x - }  

is called r a t i o n a l .  The  above k is called the d e g r e e  o f  r a t i o n a l i t y  of the 

equivalence class { x , x - }  E X__/tr For {x} E X__/~ which is not  rat ional,  the 

degree of ra t ional i ty  of  {x} is defined to be o~, and we identify {x} with x. For 
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{ z , x - }  �9 X / n  which is rational, we sometimes identify { x , z - }  with x. For 

x �9 X / n  which is identified with (ai,ji)ie7. �9 X in this sense, we denote 

(22) xl,i = ai and z2,1 = jl. 

We may consider p as a function on X / n  • X / n .  We may also consider Os  as a 

relation on X / n ;  for x, y �9 X / n ,  (x, y) �9 Os iff there exist _x_ �9 x and y �9 y such 

tha t  (x, y_) �9 Os.  We also consider (9 = Ukcz O(-oo,k] as a relation on X / n .  Note 

that  Os  is not in general an equivalence relation on X / n ,  since the transit ivity 

may fail to hold. However, 6} is an equivalence relation on X / n .  Denote 

x = {x �9 x / n :  {p(x,y): (x,y) �9 o }  = R}. 

We consider the topological space X as a subset of the quotient topological 

space X / n .  For x and y in X,  denote 

(23) 

6(x, y) = max{k: (x, y) E •(-k,k)} and d(x, y) = A-m~x.ex ~(~,z)^~(z,y) 

Then, it is not difficult to see that  d is a metric on X which is consistent with 

the topology. 

It  is clear that  for any x E X and t E R, there exists a unique y E X such that  

p(x, y) = t. This y is denoted as Ttx, so that  Tt is a transformation on X. By 

(20), it holds that  

To = id and Tt+s = Tt o Ts 

for any t and s in I~ 

THEOREM 3: (Tt)teR is a continuous flow on X .  

Proof: I t  is sufficient to prove that  the mapping (x, t) ~ Ttx is continuous. 

G i v e n x  E X and t E ~L take any real number e > 0. Let k E Z satisfy that  

(x, T+(itl+l)X ) E e ( -~ ,k ] .  Take a sufficiently large positive integer M determined 

later which is larger than both of - k  and the minus of the degree of rationality of 

x. Take any y E X with d(x, y) < X -M. Then, it holds that  a := Xl,-M = Yl,-M 

(refer to (22)), and 

I O ( x , - M , M )  - O ( y , - M , M ) I  ~ 1, 

where to define 0, we identify x and y with elements in X in the previous sense. 

We can choose M large enough and ~ > 0 small enough so that  for any s E R 
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with It - s I < 5, we have (Ttx) l , -M = ( T s y ) I , - M  ---- dr and 

[O(Ttx, - M ,  M )  - O(T~y, - M ,  M)[ < Co + 2, 

where 
Co - maxnes  v(r/) 

min,  e~ v(y) 

Moreover, if M is sufficiently large, this implies that  d(Ttx, T,y) < r which 

completes the proof. | 

As for the substitution % we assume further that  the associated matr ix  M 

has an eigenvalue # such that  1 < p < A. Let w = ( w ( a ) ) ~  be a nonzero real 

column vector such that  M w  = #w. For x and y in X with (x, y) E O, we define 

r (x ,  y) exactly like p(x, y) with # and w instead of )~ and v. Define F: X • R ~ R 

by 

(24) F(x,  t) -- v(x, Ttx). 

THEOREM 4: F is a continuous cocycle on X with respect to (Tt)teR. 

Proof: Since (20) holds for T in place of p, 

F(x, + t) = F(x, + F(T,x, t) 

holds for any x E X and s, t E R. Therefore, to complete the proof, it is sufficient 

to prove the continuity of F: X x IR ~ ~ For this purpose, we prove that  there 

exists a constant C such that  

(25) IF(x,  t)l < Girl ~ 

for any x E X and t E R, where a = z~ Let x E X and t E ~L We may log ~ " 

assume without loss of generality that  t > O. An interval [a, b) in R is called 

a (k, a, x ) - i n t e rva l  if T~x has the degree of rationality k, (TaX)l,k = a (refer 

to (22)) and b - a = v(a)A -k.  It  is also called k - in t e rva l  in short. Let ko be 

the minimum value k such that  [0, t) contains a k-interval. Then, it holds that  

A -k~ < c l - l t ,  where C1 := min~e~ v(a) 

Let Ikoo, Ikol , . . . , Iko , j -1  be the sets of ko-intervals contained in [0, t). Then, 

it holds that  their union becomes one interval and iko := j _< 2r - 2. Also, [0, t) 

after subtracting these intervals consists of one or two intervals. Let Ik,0, I k , t , . . . ,  

I ~ j , - i  be the set of k-intervals contained in the remainder part  with k = ko + 1. 
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Then, it holds that 0 < iko+l := J '  < 2 r - 2  and the union of these ko + 1-intervals 

together with the ko-intervals becomes one interval. By continuing this process 

we have the decomposition 

[o,t) (o,t) = U U 
k>_ko O<i<ik 

where ik _< 2r - 2, Ik,i is a k-interval (Vk >_ ko) and the left-hand side is chosen 

according to whether x is rational or not, respectively. If [a, b) := Ik,~ is a 

(k, a, x)-interval, then by the definition of T it holds that  

F(x,  Ik,i) := F(x, b) - F(z,  a) = w(a)V -tr 

Hence, we have 

{F(x,t)l = I ~ ,  ~ ,  F(x, Ik#)l 
k>_ko O<i<ik 

<_ E E 
k>_ko O<_i<ik 

< 2rC2(1 - # -~) - lA-k~ 

< 2rC2(1 - t t - 1 ) - l C l - ~ t  ~ =: Ct ~, 

where C2 := max~es Iw(a)[. Thus, we have (25). 

To complete the proof, it is sufficient to prove that  F(x, $) is continuous in 

x e X for any fixed t. Since F(x,  t) = r (x ,  Ttx), we prove the continuity of 

v(x, Ttx) in x. This is just a repetition of the proof of Theorem 3 for r instead 

of p. II 

THEOREM 5: F is minimaJ. 

Proof" Let 

A = { ( a ,  T/) E ~ • ~ :  (7 = ~ n ( ~ ) i  , 17 = ~ n ( ~ ) i + l  for s o m e  

n _> 1, ~ E E and i with 0 < i < L(~"(~)) - 1}. 

Let f l (F)  be as in Section 2. For any given T > 0, define 

f~T(F) = {w][-T,T]: w e s  

where O)I[_T,T] ~ the restriction of the function w: R --~ ~ to [ -T ,  T]. Let k E Z 

satisfy 

A-~ rainy(a)  > 2T. 
nEE 
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For any (a, 7/) E A, choose x ~ E X such tha t  x ~ = {y, y - }  E X__/~ is rational 

with the degree of rationali ty k - 1 in the notat ion (21) as follows: 

Y-l,k = a and Yl,k = 7/ (refer to (22)). 

There exists k such tha t  for any x E X,  the interval I - T ,  T] is covered by the 

union of 2 consecutive k-intervals, say a (k, a, x)-interval and a (k, rl, x)-interval 

in this order, where we take these 2 intervals even if it is already covered by one 

of them. Then, it is clear tha t  FxI[-T,T] = fa,n,s for some s with - v ( a ) , k  -~` + T  <_ 

s __< v(rl)A -k  - T, where we put  fo,n,s = (UsF=~,)I[-T,T] for (a,r/) E A and x ~ 

as above. This implies tha t  the set 

{)r (a, rl) E A, - -v(a) ,k  - k  + T < s < v(rl),~ - k  - T }  

is dense in f~r (F) .  Since A is a finite set and the set of possible s as above with 

respect to (a, 7/) E A is compact ,  it is easy to see tha t  the above set is closed. 

Hence we have 

(26) f ~T (F)  = {fo, , , , :  (a, 7/) E A, - v ( a ) , k  - k  + T < s < v (~)A  - k  - T } .  

By the same reason, it is also clear tha t  the functions in f ' tT (F)  are equi- 

continuous. This proves tha t  f i (F)  is compact .  

Take any x E X and fo,,7,~ with (a, r/) E A and 

- v ( a ) A  -k  + T < s < v(r/),k -k  - T. 

Since ~o is mixing, for any ( E ~ and i E Z, there exists K > 0 not depending 

on x such that  (T tx ) l , i  = ( f o r  some t E R with I t[ < K.  Let ( a n d  n >_ 1 

satisfy tha t  ~o~(() contains the block arl. Then, since there exists t in a bounded 

set not depending on x such tha t  ( T t x ) l , k - n  = ~, ( T t x ) l , k  takes values a and 

r/ consecutively as t increases within a bounded set not  depending on x. This 

implies tha t  there exists L > 0 not depending on x such tha t  

UtFx l [ - r , r ]  = fo,,7,~ 

holds for some t E R with ItI < L. Since Y/(F) is the closure of {F=: z E X},  

this implies tha t  for any w E Ft(F) and cJ ~ E f l (F) ,  there exists t E R such tha t  

Uta)I[_T,T] ~- aJ'I[_T,T]. This proves tha t  F is minimal. 
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1o~ p THEOREM 6: F has the a-scaling property with a = logA" 

Proof: For any x E X, define Sx  E X as follows: 

(SX) i , j  = Xi , j+l  (Vi = 1,2; Vj E Z) 

Then, it is clear from the definition that 

(refer to (22)). 

Isr. J. Math.  

F(Sx ,  t) = )WF(x, A-it)  (Vt E R). 

Since F is minimal, this implies that F has the a-scaling property. I 

THEOREM 7: For any e > 0, it holds for the capacity that 

min{~-E: E C l'l(F), for any w e 12(F), there exists 

'1 e E such that sup Iw(t) - r/(t)l < e} = O ( Y )  
O<_t<N 

as N -+ oc. Hence by Theorem 2, F has the discrete scaling property. 

Proof." Since 12(F) is a uniformly equicontinuous family, for any e > 0, there 

exists ~ > 0 such that for any w E 12(F) and t , s  E R with I t -  s[ < 5, 

IT(t) - w(s)[ < e holds. Take any N > 0. Let T = N and apply (26). Let 

E := {U, sFx.,:  (a,~) E A, i = - [N /~] , - [N /5]  + l , . . . ,  [N/5]}. 

Then, by (26) and the choice of 5, it holds that for any w E ~2(F), there exists 

~? E E such that 

sup I x ( t )  - ,7(t) l  < 
O<_t<N 

Since ~-- = O(N)  as N --* c~, we complete the proof. I 

4. Example 

Here, we give an example of minimal cocycles with the continuous scaling prop- 

erty for which O ( N  2) holds for the capacity. We'll not go into the details since 

the full proof together with a general construction is given in [5] or [6]. 

1 by the For each a with 0 < a < 1, there corresponds uniquely A with �88 < A < 
1 relation ) ~ - ( ~ - A )  ~ = �89 We assume further that  ), and ~ - ~  are multiplicatively 

independent. Actually this condition is satisfied except for countably many a. 

Especially, a = �89 satisfies it. Define a continuous function f on [0, 1] as follows: 
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(i)  f ( 0 )  = o,  = f ( � 8 9  = �89 
(ii) f( �89 + t) = 1 - f( �89 - t) for any t E [0, �89 

(iii) f ( M )  = , k ~ f ( t )  for any t E [0, 1], and 
1 (iv) f(,k + (�89 - ,k)t) - A s : - ( 7  - / k ) o f ( t )  for any t C [0, 1]. 

Let 

X : = { ~ E f l :  for a n y T > O ,  t h e r e e x i s t s s a n d B > O w i t h  

[0, 1] D Is -- B - 1 T ,  s + B - 1 T ]  such tha t  w(t) = 

B " ( f ( s  + B - i t )  - f ( s ) )  for any t �9 [ - T , T ] } .  

Then,  the fact tha t  X is a nonzero minimal cocycle with the continuous a-scaling 

proper ty  follows from the general arguments  in [4]. 

We only show briefly the reason for O(N2) .  Take any w �9 X and N > 0. Then,  

for T = 2(�89 - ) ~ ) - 2 N ,  there exists s and B > 0 with [0, 1] D [ s - B - 1 T ,  s + B - 1 T ]  

such tha t  w( t )  = B ~ ( f ( s + B - l t ) - f ( s ) )  for any t �9 I - T ,  T]. Let Ao := {0, 1} and 

An+l  = [ . J ~ : e A ~ { X ' X + ' k Y ' X + ! y ' x + ( 1 - ' k ) Y } 2  (n = 0, 1,2, . . . ) ,  where for x �9 An ,  

y is the difference from x to the next  element in An, or y = 0 if x = 1. Then,  

the ratio between the lengths of 2 successive intervals divided by the elements in 

An is either (1 _ )~)/,k, 1 or ,k/( 1 - )Q. 

Take the minimum n such tha t  for some successive elements a' ,  b I, d in An it 

holds tha t  

s -  B - I T  <_ a ~ < s < s + B - I N  <_ d < s + B - I T .  

Then  by the definition of f ,  flla',b,l and f][b,,c,] are -l-f with scaling transfor- 

mat ions on variables and functions. Define j and k to be +1 corresponding to 

the above • in -t-f for fl[a',b'] and fl[b',c'], respectively. Let a = B ( a  ~ - s), 

b = B(b '  - s)  and c = B ( c '  - s ) .  Let e = (c' - b ' ) / (b '  - a ' ) .  Then,  Wl[o,N] can be 

reproduced by the following information: 

real numbers  a and b, j a n d k i n { - 1 , 1 } ,  e � 9  , 1 , ~  , 

where b - a = O ( N )  and In, c] D [0, N] with c = b + (b - a)e .  

The  way of the construct ion is as follows. Define functions gl: In, b] -~ R and 

g2: [b, c] --* R by 

g l ( t ) = j ( b - a ) ~ ' f  ~ - a  ' g 2 ( t ) = g l ( b ) + k ( c - b ) " f  ~ - b  " 
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Let g: [a, c] --~ R be gl on [a, b] and g2 on [b, c]. Then,  we have w(t)  = g(t)  - g(O) 

for any t E [0, N]. Since g is uniformly a-HSlder  continuous, to  get an ~- 

approx imat ion  of wl[O,N] , it is sufficient to have CE1/~-approximat ions  of a and 

b together  with j ,  k and e. Therefore,  O ( N  2) number  of different g ' s  are enough 

to approx imate  any of w][0,N] up to e by one o f g ' s  as N ~ oc and e fixed. Thus,  

we have O ( N  2) for the capaci ty  of X .  
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