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ABSTRACT

‘Fractal’ functions are formulated as a minimal cocycle on a topological
dynamics which admits nontrivial scaling transformations. In this paper,
it is proved that if in addition it admits a continuous family of scaling
transformations, then its capacity is not in o(N2). We define minimal
cocycles with nontrivial scaling transformations coming from substitu-
tions on a finite alphabet which are proved to have capacity O(N), so
that they admit only a discrete family of scaling transformations. We
also construct one which has capacity O(N?) and admit a continuous

family of scaling transformations.

* Supported by C.N.R.S.(U.R.A 225); Partially supported by the Japan Society for
the Promotion of Science.
Received March 24, 1992 and in revised form February 15, 1995

393



394 J-M. DUMONT, T. KAMAE AND S. TAKAHASHI Isr. J. Math.

1. Introduction

Let £ be the space of continuous functions w: R — R with w{0} = 0 with the
compact open topology. For t € R, let us define U;: @ — Q by (Uw)(s) =
w(s+1t) —w(t). For A > 0, let Vy: @ — Q be such that (V\w)(s) = A%w(A~1s),
where a is a fixed real number with 0 < @ < 1

We study a nontrivial compact subspace X of Q with the properties that

(i) {Uw: t € R} = X for any w € X, and

(i1) for some positive A # 1, Vi X C X.

In this case, the set of A as above together with 1 is called the base set of X.
Such X as above is called a minimal cocycle with the a-scaling property.
If in addition, the base set is Ry, then X is said to have the continuous scaling
property (otherwise, the discrete scaling property).

In this paper, we prove that any function w in a nonzero minimal cocycle with
the a-scaling property is uniformly a-H6lder continuous but nowhere o’-Hdélder
continuous for any o' > a. We also prove that a minimal cocycle with the
continuous scaling property cannot have capacity in o(N?). We know examples
of minimal cocycles with the continuous scaling property having capacity O(N?)
so that this lower bound is exact. On the other hand, the minimal cocycles
determined by substitutions on a finite alphabet have capacity O(N), and hence,
have the discrete scaling property.

There are two important aspects of ‘fractal’ functions: almost periodicity and
self-similarity. Our notion of minimal cocycles with the scaling property is a
formulation of ‘fractal’ functions from these points of view.

The self-affine functions in the sense of [1] can be embedded in minimal cocycles
with the scaling property. In fact, these functions induce the minimal cocycles
determined by substitutions with constant lengths, which are discussed in [2]
from the point of view of stochastic processes. The substitutions define counting
systems which are generalizations of r-adic representations ([3]). The sums of
digits to these counting systems are discussed in [4]. Our dynamical systems
defined in Section 3 are translations of the 2-way expanded ‘numbers’ in these
counting systems. In the Japanese text book [5], we have already published most
of the results here including a general construction of minimal cocycles with the
continuous scaling property. Though a part of the text book was intended to
be an introduction to this paper, the delay of its preparation caused the time

inversion. Another simpler way of general construction of minimal cocycles with
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the continuous as well as discrete scaling property together with unique ergodicity

is given in a forthcoming paper [6].

2. Minimal cocycles with the scaling property

Let X be a nonempty topological space and (T;):cr be a continuous flow on
X, that is,
(1) for any t € R, T; is a mapping X — X such that Tp is the identity and
Ts 0Ty = Ts4y for any s,t € R, and
(2) (z,t) — Tiz is a continuous mapping X x R — X.
We call a function F: X x R — R a cocycle on X with respect to (T}):cr if

F(z,s+t) = F(z,s) + F(T,x,1)

holds for any x € X and s,t € R. It is called a continuous cocycle if in addition,
F(z,t) is a continuous function of (z, t).

Let Q be the set of continuous functions w: R — R such that w(0) = 0 with
the compact open topology. For any s € R, we define a mapping U,: 2 — Q by

(Usw)(t) = w(s +t) — w(s).

Then, (U,)scr is a continuous flow on Q.

For a continuous cocycle F on X and = € X, the mapping ¢t — F(z,t) from
R to R belongs to €2, which is denoted by F,. Then the mapping « +— F, from
X to Q is continuous. We denote by Q(F) the closure of {F.: x € X}. Then, it
holds that U,Q(F) = Q(F) for any s € R. The set Q(F) is also called a cocycle.

A continuous cocycle F is calied minimal if

(3) Q(F) is compact, and

{Usw:s €R} = Q(F)

for any w € Q(F).

Let a be a real number with 0 < a < 1 which we fix throughout this section.
A continuous cocycle F' is said to have the a-scaling property if there exists
3 > 0 with 3 # 1 such that

(4) VsQUF) C Q(F),
where Vj: 2 — Q is defined as

(Vaw)(t) = B*w(B7't)  (VtER)
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for any w € Q(F).
A positive number @ with the property (4) is called a base of F with respect
to a.

THEOREM 1: Let F' be a nonzero, minimal cocycle with the a-scaling property.
Then the following results hold:
(i) The set of bases of F with respect to a is a closed, multiplicative subgroup
of R, .

(ii) There exists a constant C such that
lw(s +1t) —w(s)] < CJ[*

for any s,t € R and w € Q(F). That is, the functions in 2(F) are uniformly
a-Hélder continuous.
(iii) For any w € Q(F) and s € R,

] 1
lm;l%up t—alw(s +t)—w(s)] >0

holds. That is, any w € )(F) is nowhere even locally a'-Hélder continuous
for any o' > a.

Proof: (i) It is clear by the definition that if 3 and v are bases of F’ with respect
to a, then so is 8. It is also clear that if 3 is a base with respect to «, then so
is 371, since V38 F) = Q(F) by the minimality of F.
Let (3,’s be bases of F with 8, — §. Then for any w € Q(F), it holds that
Vaw = limp o Va,w € (F). Hence, § is a base. Thus the set of bases is closed.
(ii) By (3),

C:= sup |w(t)| < oo.
wEQ(F),[tIL1

Let 3 > 1 be a base of F with respect to a. Take any w € (F) and s,t € R
Let k € Z satisfy that
Bt <t < B

Then, denoting 1 = Vz-:U,w € Q(F), we have
lw(s +t) — w(s)] = [(Uw)(t)] = |B**n(B~%t)] < B*C < O},

which proves (ii).
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(iii) Let 8 > 1 be a base of F* with respect to a. We prove that

inf sup |w(t)| > 0.
wEQ(F) 1<:I<)a| @
Suppose that this is not true. Then, since Q(F') is compact, there exists wg €
U(F) such that wo(t) = 0 for any ¢ € [1, 3]. Since 8" is a base of F with respect
to a for any n = 1,2,..., there exists w, € Q(F) such that

wn(t) = F%wo(B7 )

for any ¢t € R. Then, w,(¢t) = 0 for any t € [3",8"*!]. Let w € Q(F) be any
limit point of the sequence (Upgnnwn: n = 0,1,2,...). Then, it is easy to see
that w = 0. By the minimality, this implies that Q(F) = {0} and that F is the
zero function, which contradicts our assumption.

Thus,

6:= inf sup |w(t)|>0.
wGQ(F)KzE;al @

Then, for any w € Q(F) and s € R, it holds that

1
limsup —|w(s +t) —w(s)| = llmsup I(U w)(t)|
eto b t10

1
= 1l s — (U, Y
‘fljﬂpxlfgﬂ e |(Usw)(B7"t)]

> B “limsup sup |8™*(Usw)(B7"t)|
n—oo 1<t<

> A7 inf su t
- nEQF) 1<t£ﬂ |7I( )

= [7% >0,
which proves (iit). ]
COROLLARY 1: Let F' be a nonzero minimal cocycle with the a-scaling property.
Then « is unique.

COROLLARY 2: Let F be a minimal cocycle with the a-scaling property. Let G
be the set of bases of . Then either G = Ry or there exists § > 1 such that
G={fmnel}.
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THEOREM 2: Let F' be a nonzero, minimal cocycle with the a-scaling property
with 0 < a < 1. Assume that for any € > 0, the capacity

min{{Z: E C Q(F), for any w € Q(F),
there exists n € E such that sup |w(t) —n(t)| < e}
0<t<N
is of o(N?) as N — oco. Then there exists 3 > 1 such that the set of bases of F
is {f™:n € Z}.
Proof: Suppose that the conclusion is false. Then, by Corollary 2, the set of
bases of F is Ry .

Take any k = 1,2,.... By the assumption, there exists Sy C Q(F) for any
N'=1,2,...such that for any w € §(F), there exists € En such that

1
(5) sup fw(t) —n(t)| < .
0<t<N 2k
Moreover,
. =N
N N =0

Take a sequence (An)n=1,2,... of positive numbers such that

lim Ay =0, lim NAy =00, and lim ——— =20
N—oo

N—oo

Take a sufficiently large N such that Ay < g&. Let w € Q(F),
A={0,1,...,[NAN] -1},

and
B={N-[NMAN]+1,N—[NAn]+2,...,N}.

Since the set of bases of F' is Ry, for any (a,b) € A x B, there exists 7, ;) €
Q(F) such that

(6) Tan(£) = (Bif—) (Uaw) (” I‘V“t)

for any ¢ € R. Since N is sufficiently large, we have

=8 < (NAN — 1)2 < [N/\N]2.
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Then, there exist (a,b),(c’,8') € A x B with (a,b) # (', ) such that
1

7 Sup [Mam(t) = M o (£)] < —

(M) 0_<_t£N|n( 8 (8) = M@y (0] < &

Since (a, b) # (a’,b'), either a # a’ or b # b’ holds. By symmetry, we may assume
that a # @’ and a < &’
Let tg = 0 and define ¢, inductively by the equation

b—a , b -d
(8) a+Ttn+1:a +

t, (n=0,1,2,...).
Then, by (6) and (8), we have
((52) — (s50)) = ((5081) = ()
P (5 et = (U5) e =012,

where

b— at
N
Since N is sufficiently large, (8) implies that

o —ad
-1}t
(=)

Moreover since we take a sufficiently large N, % is sufficiently close to 1, and

S, =a+

(10) (tn41 —ta) — (a —a)| = < 3Antn.

An is small enough, hence we may assume by (10) that 0 = tg < t; < --- < t; <
2k{a’ — a) < N where k has already been given in (5).
Thus, adding the equations (10), we have for any n = 0,1,...,k

N
(11) th — mn(a’—a) < 6k%(a’ — a)AN (n=0,1,...,k).
Since |"‘T“| < 1, this implies that

(12) [(sn — a) — n(a' — a)| < 6k*(a’ - a)An (n=0,1,...,k).

By (7), (9) and (ii) of Theorem 1, there exists a constant C such that

|w(sn41) — w(sn) — wls1) + w(so)]

b—a b-a\” ¥-ad\*
ta) ~ Nar by (tn -

(N ) 7(a,b)(ta) = (a5 (t )|+K N) ( i )

1.

k

(1= (1= 200)%)0ta" < £+ 2ANC(2k(@ - a))°

IA

In(a’,b’)(tn)|

IN
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for any n = 0,1,...,k. Therefore, by summing up this inequality for n =

0,1,...,m — 1, we have

lw(sm) —~ w(so) — mA| <1+ 2An(a’ - a)*2°k!+eC

for m = 0,1,...,k, where 4 = w(s;) — w(sg) = w(a') — w(a).

0,1,...,k, we have

Hence, for n

(13) [(Uaw)(8n — a) — nA| < 1+ 2An(a’ — a)*2%k!+eC.

By (12), (13) and (ii) of Theorem 1,
(14) |(Uaw)(n(a’ - a)) —nA[ < 1+ (a’ - a)*D,

where
D = (2An2°k1Ye 4 62 AN K2 C.

By the assumption that—the set of bases of F is R, there exists &y € Q(F)

such that
En(t) = (k(@' - @)~ (Uow)(th(a’ — a))
for any t € R. Then by (14), we have for n =0,1,...,k,
(15) lev (3) - 2Bxl <k*(@ =) + k"D,
where
By = k'=%(d' — a)™® A.

Since {n(%) is uniformly bounded as N — oo inn = 0,1,
bounded as N — oo. Let { N’} be a subsequence of {N} such
e € Q(F) and E; € R for which

lim BNr = Ek,

N'—o0
and
lim &n(t) = me(t)
N'—=o0

holds uniformly on compacta t € R. Then since {a' —a) ™ <1,

® (1) - 25 <2

..., k, By stays
that there exist
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follows from (15) for n = 0,1,..., k. Since nx(%) is uniformly bounded as k — oo
when n < k, Ej stays bounded as k — oo. Then, there exists a subsequence {k'}
of {k} such that there exists 7 € (f) and E € R for which

klim Ekl = E,
I_.w

and
lim e (8) = n(t)
k! —o0

holds uniformly on compacta t € R. Then by (16), n(t) = tE holds for any
t € [0,1]. This contradicts (iii) of Theorem 1, which completes the proof. ]

3. Substitutions and cocycles

In this chapter, we construct minimal cocycles with the scaling property deter-
mined by substitutions. Before stating the general construction, we give a simpler
example.

Let ¢ be the following substitution on 2 symbols {a, b}:
(a) = aaabbbaaa and w(b) = bbbaaabbb,

where we denote p(a)o = w(a)1 = ¢{a)2 = a, p(a)s = p(a)s = ¢(a)s = b, etc.
Let us consider a formal two-sided expansion in base 9:

i= Y, #97 (ie{01,...,8})
~00< i< 00
such that liminf; ,_ j; < 8 and limsup,_,__, j; > 0. For this j, we associate
a sequence 0 = (0;);cz on {a, b} such that ©(0;);, = 0i4; for any i € Z. Let X
be the set of such pairs (o, j). For (0,j) and (5, h) in X with the property that
there exists k such that o; = ; and j; = h; for any i < k, we can calculate the
difference ¢t := h — j € R just as the usual 9-adic calculation. In this case, we
denote (1, h) = Ti(o,j) so that (T});cr defines a continuous flow on X, where
we identify these (o,7) and (n,h) if t = 0. For (0,7) € X, we define a formal
two-sided expansion
flooi)= > w(e)3™,
—o00<i<o0

where w(a) = 1 and w(b) = —1. Define a cocycle F on X with respect to (T}):cr
by F((e,5),t) = f(Ti(o,5)) — f(a,]), the difference being able to be calculated
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since the higher digits coincide. This example gives an example of a minimal
cocycle with the 2-scaling property.

The general construction is a little more complicated. Let ¥ be a finite set
with §3 > 2. Let ¢ be a substitution on ¥, that is, ¢ is a mapping from X into
£+ =2, =" For £ € T, we denote by L(£) the length of &, that is L(£) = k
if and only if £ € £*. An element £ in £F is denoted as £ = &¢&; - - - &x—1 with
&ex (i=1,...,k—1),s0 that for o € X,

¢(0) = o(a)ow(a)1 " (T) L(p(a))-1-

We extend the mapping ¢ so that the mapping y: £t — T satisfies

@(0001 - 0%-1) = p(d0)p(01) - (k1)

forany k=1,2,...and 0, € ¥ (i =0,1,...,k — 1)}, where the right-hand side
implies the concatenation of ¢(o;)’s. We assume that ¢ is mixing, that is, there
exists n such that for any 0,0’ € X, o’ appears in ¢"(0). Let M = (mgy0/)g.0'ex
be the matrix associated to y; that is,

(17 Mo = §{: p(o); = 0'}.

Since ¢ is mixing, we have the following results known as the Perron-Frobenius
Theorem.

1. There exists a simple eigenvalue A of M such that |A’} < A holds for any
other eigenvalue X\’ of M.

I1. There exists a unique row vector u = (u(0))sex and a unique column vector
v = (v(0))oex such that

(18) u(e) >0, v(e)>0 (Yo%), Y uo)=1,
o€L

Z u(lo)v(g) =1, uM =Xxu and Mv=)v.
oED

Let

X ={(04,Ji)iez: 0: € L, 5 € {0,1,...,L(p(a:)) — 1}, (1), = 0i41(Vi € Z)}.

We consider X the induced topological space as a subset of the product topo-
logical space (£ x {0,1,...,7 — 1})%, where r = max,¢x L(¢(0)). Then, X is a
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compact topological space. For z = (04, j:)icz € X and n,m € Z with n < m,

define a nonnegative integer 6(z,n, m) inductively as follows:

O(I,n,n“*‘l):jn-
(19) Oz, nm+1)= > LG (0n)i)) + im-

i<H(z,n,m)

For a subset S of Z, define an equivalence relation ©g on X by
(94, Ji)iezs (Mis hi)icz) € ©s  iff 0; = n; and j; = h; for any i € S.

Let © = Upez ©(—cok)- For £ = (04, ji)iez and y = (s, hi)iez in X such that
ax = 1 and 9(z, k,m) < 8(y, k,m) for some k,m € Z with k < m, we define

pre(z,y) = lim A~" ) v(@" " (ok)s).
n—oo
6(x,k,n)<i<8(y,k,n)

It is clear from (18) that the above limit exists. We define pi(x,z) = 0 and
pe(y, ) = —pr(z,y) for z, y as above. For (z,y) € O, we define p(z,y) = pr(z,y)
for some k € Z with (z,y) € ©(_ x)- This definition is independent of the choice
of k. It is clear that for any z, ¥ and z in the same equivalence class of ©, it
holds that

(20) p(z,z) = p(z,y) + p(y, 2)-

Let « denote the equivalence relation on X such that (z,y) € « iff (z,y) € ©
and p(z,y) = 0. The equivalence classes of x consist of either one element or
two elements {z,x~}; the latter case occurs iff £ = (03, J;)icz € X satisfies that
7: = 0 for any sufficiently large i € Z and that j; > 0 for some ¢ € Z. In this
case, we define = = (1, hi)iez € X by

n; = o; and h; = j; for any 7 < k,
(21) hie = jx — 1, and
hi = L(p(0;)) — 1 for any 7 > k,
where k is the maximum ¢ such that j; > 0. Such an equivalence class {z,z7}
is called rational. The above k is called the degree of rationality of the

equivalence class {r,2~} € X/k. For {r} € X/k which is not rational, the
degree of rationality of {r} is defined to be oo, and we identify {z} with z. For



404 J-M. DUMONT, T. KAMAE AND S. TAKAHASHI Isr. J. Math.

{z,z~} € X/k which is rational, we sometimes identify {z,z~} with z. For
z € X /k which is identified with (o}, j;);cz € X in this sense, we denote

(22) ryi=o0; and 22;=j.

We may consider p as a function on X /k x X /x. We may also consider O as a
relation on X /k; for z,y € X/k, (z,y) € Og iff there exist z € x and Y € y such
that (z,y) € ©s. We also consider © = | ¢z ©(—oo ] s a relation on X /x. Note
that ©g is not in general an equivalence relation on X/, since the transitivity

may fail to hold. However, © is an equivalence relation on X /. Denote
X ={z € X/r: {p(z,y): (z.y) € ©} = R}.

We consider the topological space X as a subset of the quotient topological
space X /k. For z and y in X, denote
(23)

6(x,y) = max{k: (z,y) € O_ixy} and d(x,y)= A" "EX 8(z,2)N8(2.y)

Then, it is not difficult to see that d is a metric on X which is consistent with
the topology.

It is clear that for any £ € X and t € R, there exists a unique y € X such that
p(z,y) = t. This y is denoted as T;z, so that T; is a transformation on X. By
(20), it holds that

To=id and Tyys=Ti0T,

for any t and s in R
THEOREM 3: (T3)ier is a continuous flow on X.

Proof: 1t is sufficient to prove that the mapping (z,t) — Tiz is continuous.
Given z € X and t € R, take any real number ¢ > 0. Let k € Z satisfy that
(, T (je|+1)%) € O(—co,k]- Take a sufficiently large positive integer M determined
later which is larger than both of —k and the minus of the degree of rationality of
z. Take any y € X with d(z,y) < A=M. Then, it holds that o := 2y _p = y1,-m
(refer to (22)), and

Io(l‘$ _MvM) _0(yv_M’M)| .<_ 11

where to define 8, we identify r and y with elements in X in the previous sense.
We can choose M large enough aud § > 0 small enough so that for any s € R
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with |t — s| < 8, we have (Tyx); —p = (Toy}1,-m = 0 and
|9(T,z, '-MaM) - 0(T3y1 ~M7 M)l S CO + 21
where
- maXyex v(n)
mingex v(7)

Moreover, if M is sufficiently large, this implies that d(Tiz,T.y) < €, which
completes the proof. [ |

As for the substitution ¢, we assume further that the associated matrix M
has an eigenvalue u such that 1 < g < A. Let w = (w(0))o,ex be a nonzero real
column vector such that Mw = pw. For z and y in X with (z,y) € ©, we define
7{z,y) exactly like p(x,y) with u and w instead of X and v. Define F: X xR — R
by

(24) F(z,t) = r(x, Tix).

THEOREM 4: F is a continuous cocycle on X with respect to (T¢)ier.

Proof: Since (20) holds for 7 in place of p,
Flz,s+1t) = F(z,s) + F(T,z,1)

holds for any x € X and s,t € R. Therefore, to complete the proof, it is sufficient
to prove the continuity of F: X x R — R. For this purpose, we prove that there
exists a constant C such that

(25) |F(z,t)| < Clt]*

foranyxeXandtGR,wherea:{—zg{{. Let x € X and t €¢ R We may
assume without loss of generality that ¢ > 0. An interval [a,b) in R is called
a (k,o0,x)-interval if T,z has the degree of rationality k, (T,z);+ = o (refer
to (22)) and b — a = v(g)A~*. It is also called k-interval in short. Let ko be
the minimum value k such that [0,t) contains a k-interval. Then, it holds that
A~k < ¢y, where C) := minyex v(0)

Let Iiyo, Jkot1, - - -+ Ik, j—1 be the sets of ko-intervals contained in [0,). Then,
it holds that their union becomes one interval and iy, := j < 2r — 2. Also, [0,1)
after subtracting these intervals consists of one or two intervals. Let Iy o, Ix 1, - - .,
I ;11 be the set of k-intervals contained in the remainder part with k& = kg + 1.
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Then, it holds that 0 < ix,41 := j' < 2r—2 and the union of these kg + 1-intervals
together with the kg-intervals becomes one interval. By continuing this process
we have the decomposition

8o (0= ) U s

k>ko 0<i<iy

where i, < 2r — 2, Iy ; is a k-interval (Vk > kg) and the left-hand side is chosen
according to whether x is rational or not, respectively. If [a,b) = I, is a
(k, 0, x)-interval, then by the definition of 7 it holds that

F(x, I ;) := F(z,b) — F(z,a) = w(a)u‘k.

Hence, we have

\F(z,)|

DD IW I

k> ko 0<i<iy

> > ow

k>ko 0<i<ix
< 2rCy(1 — pmt) iAo

< 22rCy(1 — p~Hyrey ot =: Ot

IA

where C3 := max,es |w(a)|. Thus, we have (25).

To complete the proof, it is sufficient to prove that F(z,t) is continuous in
z € X for any fixed t. Since F(x,t) = 7(z,Tix), we prove the continuity of
7(z, Tiz) in z. This is just a repetition of the proof of Theorem 3 for 7 instead
of p. | |

THEOREM 5: F is minimal.
Proof: Let
A={{o,n) €ExLio=¢"(£):i,n=¢"(£)is1 for some
n>1,6 € X and ¢ with 0 <i < L(p"(€)) — 1}.

Let Q(F) be as in Section 2. For any given T > 0, define
F) = {w][_T,T]: wE Q(F)},

where wlj_7 17 is the restriction of the function w: R = R to [-T,T]. Let k€ Z
satisfy

A~*minv(o) > 2T.
L))
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For any (o,7) € A, choose 27" € X such that 2°" = {y,y~} € X/« is rational
with the degree of rationality k¥ — 1 in the notation (21) as follows:

Yy ix=0 and yx=7n (refer to (22)).

There exists k such that for any x € X, the interval [-T,T] is covered by the
union of 2 consecutive k-intervals, say a (k, o, z)-interval and a (k, 5, z)-interval
in this order, where we take these 2 intervals even if it is already covered by one
of them. Then, it is clear that Fr|(_r 1} = fs.n,s for some s with —v(e)A*+T <
s < v(n)A~F — T, where we put fo s = (UsFzon)|j-1,7) for (o,1) € A and z°"
as above. This implies that the set

{fons (a,m) € A, —v(a),\“c +T <s<uv(n)A* =T}

is dense in Qp(F). Since A is a finite set and the set of possible s as above with
respect to {o,7) € A is compact, it is easy to see that the above set is closed.

Hence we have
(26) Qr(F) = {fons: (0,1) €A, ~v(a)A* + T < s <v(nA~* - T}.

By the same reason, it is also clear that the functions in Qr(F) are equi-
continuous. This proves that Q(F') is compact.
Take any z € X and f,,,, with (o,7) € A and

— (@) A LT <s<v(nr*-T.

Since ¢ is mixing, for any £ € ¥ and ¢ € Z, there exists K > 0 not depending
on z such that (Tyz),; = £ for some t € R with | {| < K. Let £ and n > 1
satisfy that ¢™(£) contains the block 7. Then, since there exists ¢ in a bounded
set not depending on x such that (Tyz)) x—n = &, (Ttx)1 s takes values ¢ and
7 consecutively as ¢ increases within a bounded set not depending on z. This
implies that there exists L > 0 not depending on x such that

UtFx‘[—T,T] = fa,n,s

holds for some ¢t € R with |t| < L. Since Q(F) is the closure of {F,: = € X},
this implies that for any w € Q(F') and o' € Q(F), there exists t € R such that
Uw|{-r,r) = w'l[=7,1). This proves that F is minimal.
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THEOREM 6: F has the a-scaling property with a = :—2%.

Proof: For any z € X, define Sz € X as follows:
(Sz)ij =ije1 (Vi=1,2; VjeZ) (refer to (22)).
Then, it is clear from the definition that
F(Sz,t) = A*F(z,A"t) (VteR).
Since F' is minimal, this implies that F' has the a-scaling property. |

THEOREM 7: For any € > 0, it holds for the capacity that

min{$Z: E C QF), for any w € QYF), there exists
n € Z such that sup |w(t) —n(t)] < e} = O(N)
0<t<N

as N — oo. Hence by Theorem 2, F has the discrete scaling property.

Proof:  Since Q(F) is a uniformly equicontinuous family, for any ¢ > 0, there
exists § > 0 such that for any w € Q(F) and t,s € R with |t — s| < §,
jw(t) — w(s)] < € holds. Take any N > 0. Let T = N and apply (26). Let

Z 1= {UsgFyon: (0,0) € A, i = —[N/6], ~[N/é] +1,...,[N/8]}.

Then, by (26) and the choice of 6, it holds that for any w € Q(F), there exists
1 € Z such that

sup |w(t) —n(t)| <e.
0<t<N

Since = = O(N) as N — oo, we complete the proof. |

4. Example

Here, we give an example of minimal cocycles with the continuous scaling prop-
erty for which O(N?) holds for the capacity. We'll not go into the details since
the full proof together with a general construction is given in [5] or [6].

For each a with 0 < a < 1, there corresponds uniquely A with % <A< % by the
relation A*—(3—A)* = J. We assume further that X and 1 - are multiplicatively
independent. Actually this condition is satisfied except for countably many a.
Especially, a = % satisfies it. Define a continuous function f on [0, 1] as follows:
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(i) £(0)=0, f(A) =A%, f(3) = 3,

(i) f(3+t)=1-f(3 —t)forany te€|0,1],

(iii) f(At) = A2 f(t) for any ¢ € [0,1], and

(iv) f(A+ (% - At} —Ax = —(% — A)=f(t) for any t € [0,1].
Let

X :={w e Q: for any T > 0, there exists s and B > 0 with
[0,1] D [s— B™'T, s+ B~'T] such that w(t) =
B*(f(s + B~'t) — f(s)) for any t € [T, T]}.

Then, the fact that X is a nonzero minimal cocycle with the continuous a-scaling
property follows from the general arguments in [4].

We only show briefly the reason for O(N?). Take any w € X and N > 0. Then,
for T = 2(1 —A)"2N, there exists s and B > 0 with [0,1] D [s— B~!T, s+ B~!T]
such that w(t) = B*(f(s+B~'t)— f(s)) for any t € [T, T)]. Let Ao := {0,1} and
Ang1 = Ugea {zx+ Ay, 2+ 1y,2+(1- Ay} (n=0,1,2,...), where for z € 4,,
y is the difference from z to the next element in A,, or y = 0 if x = 1. Then,
the ratio between the lengths of 2 successive intervals divided by the elements in
A, is either (3 — A)/A, Lor A/(3 — A).

Take the minimum n such that for some successive elements a’, b, ¢’ in A, it
holde that

s—B M T<d <s<s+B 'N<<s+B T

Then by the definition of f, fl. s and f|p ) are £f with scaling transfor-
mations on variables and functions. Define j and k to be +1 corresponding to
the above + in +f for fl, ) and f ljpr,c'}» Tespectively. Let a = B(d' — s),
b=B(¥ —s)and c = B(c' —s). Let e = (¢ = ¥/) /(¥ —~ a'). Then, w|jp,n} can be
reproduced by the following information:

1

1 _
real numbers ¢ and b, j and k in {-1,1}, ec€ {—2/\—/\, 1, N/\—A’}’
2
where b — a = O(N) and [a,¢] D [0, N] with ¢ = b+ (b — a)e.
The way of the construction is as follows. Define functions g: [a,b] — R and
g2: [b,c] = R by

00 =it-077 (;=5). e =n®+re-02s (7).
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Let g: [a,c] — R be gy on [a,b] and g9 on [b,c]. Then, we have w(t) = g(t) — g(0)
for any t € [0,N]. Since g is uniformly a-Holder continuous, to get an e-
approximation of wlp, N}, it is sufficient to have Ce'/*-approximations of a and
b together with j, k and e. Therefore, O(N?) number of different ¢’s are enough
to approximate any of w|jg N} up to € by one of g’s as N — oo and ¢ fixed. Thus,
we have O(N?) for the capacity of X.

ACKNOWLEDGEMENT: The authors thank the referee for many useful sugges-
tions which make the paper more understandable.

References

[1] T. Kamae, A characterization of self-affine functions, Japan Journal of Applied
Mathematics 3-2 (1986), 271-280.

[2] T.Kamae and M. Keane, A class of deterministic self-affine processes, Japan Journal
of Applied Mathematics 7-2 (1990), 185-195.

[3] J-M. Dumeont and A. Thomas, Systemes de numeration et functions fractales relatifs
aux substitutions, Theoretical Computer Science 65 {1989), 153-169.

[4] J-M. Dumont and A. Thomas, Digital sum moments and substitutions, Acta
Arithmetica 44 (1993), 205-225.

[5] T. Kamae and S. Takahashi, Ergodic Theory and Fractals, Springer-Verlag, Tokyo,
1993 (in Japanese).

(6] T. Kamae, Linear expansions, strictly ergodic homogeneous cocycles and fractals,
to appear.



